Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123153

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Bases de Dados Factuais , Canais Iônicos , Ligantes , Receptores Citoplasmáticos e Nucleares
2.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961154

RESUMO

Mesolimbic dopamine (DA) transmission is believed to play a critical role in mediating reward responses to drugs of abuse, including alcohol (EtOH). EtOH is the most abused substance worldwide with chronic consumption often leading to the development of dependence and abuse. Unfortunately, the neurobiological mechanisms underlying EtOH-seeking behavior and dependence are not fully understood, and abstinence remains the only effective way to prevent alcohol use disorders (AUDs). Here, we developed novel RGS6 fl/fl ; DAT-iCreER mice to determine the role of RGS6 in VTA DA neurons on EtOH consumption and reward behaviors. We found that RGS6 is expressed in DA neurons in both human and mouse VTA, and that RGS6 loss in mice upregulates DA transporter (DAT) expression in VTA DA neuron synaptic terminals. Remarkably, loss of RGS6 in VTA DA neurons significantly reduced EtOH consumption, preference, and reward in a manner indistinguishable from that seen in RGS6 -/- mice. Strikingly, RGS6 loss from VTA DA neurons before or after EtOH behavioral reward is established significantly reduced (∼50%) re-instatement of reward following extinguishment, demonstrating distinct roles of RGS6 in promoting reward and relapse susceptibility to EtOH. These studies illuminate a critical role of RGS6 in the mesolimbic circuit in promoting EtOH seeking, reward, and reinstatement. We propose that RGS6 functions to promote DA transmission through its function as a negative modulator of GPCR-Gα i/o -DAT signaling in VTA DA neurons. These studies identify RGS6 as a potential therapeutic target for behavioral reward and relapse to EtOH.

3.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37037594

RESUMO

Precise determination of transgene zygosity is essential for use of transgenic mice in research. Because integration loci of transgenes are usually unknown due to their random insertion, assessment of transgene zygosity remains a challenge. Current zygosity genotyping methods (progeny testing, qPCR, and NGS-computational biology analysis) are time consuming, prone to error or technically challenging. Here, we developed a novel method to determine transgene zygosity requiring no knowledge of transgene insertion loci. This method applies allele-specific restriction enzyme digestion of PCR products (RE/PCR) to rapidly and reliably quantify transgene zygosity. We demonstrate the applicability of this method to three transgenic strains of mice (Atm TgC3001L, Nes-Cre, and Syn1-Cre) harboring a unique restriction enzyme site on either the transgene or its homologous sequence in the mouse genome. This method is as accurate as the gold standard of progeny testing but requires 2 d instead of a month or more. It is also exceedingly more accurate than the most commonly used approach of qPCR quantification. Our novel method represents a significant technical advance in determining transgene zygosities in mice.


Assuntos
Genótipo , Camundongos , Animais , Alelos , Transgenes/genética , Camundongos Transgênicos , Sequência de Bases
4.
Br J Pharmacol ; 178 Suppl 1: S1-S26, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529830

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Ligantes , Transporte Proteico , Receptores Citoplasmáticos e Nucleares
5.
Mol Pharmacol ; 98(6): 730-738, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32015009

RESUMO

Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia: RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT: Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.


Assuntos
Atividade Motora/fisiologia , Degeneração Neural/patologia , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/patologia , Proteínas RGS/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Doença de Parkinson/fisiopatologia , Parte Compacta da Substância Negra/fisiopatologia , Transdução de Sinais/fisiologia
6.
JCI Insight ; 52019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120439

RESUMO

Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Parte Compacta da Substância Negra/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Receptores de Dopamina D2/metabolismo , alfa-Sinucleína/metabolismo , Fatores Etários , Idade de Início , Animais , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/patologia , Humanos , Locomoção , Camundongos , Camundongos Knockout , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Parte Compacta da Substância Negra/citologia , Parte Compacta da Substância Negra/patologia , Quimpirol/farmacologia , Transmissão Sináptica
7.
J Toxicol ; 2018: 9196865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245715

RESUMO

We investigated the concentration of tetrodotoxin (TTX) in sections of skin containing and lacking red dorsal spots in both Eastern newt (Notophthalmus viridescens) efts and adults. Several other species, such as Pleurodeles waltl and Echinotriton andersoni, have granular glands concentrated in brightly pigmented regions on the dorsum, and thus we hypothesized that the red dorsal spots of Eastern newts may also possess higher levels of TTX than the surrounding skin. We found no difference between the concentrations of TTX in the red spots as compared to neighboring skin lacking these spots in either efts or adults. However, efts with more red dorsal spots had elevated TTX levels relative to efts with fewer spots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...